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Abstract

The purpose of this thesis is to investigate methods for integrating data from

different surveys. Data integration is a broad topic associated with many differ-
ent statistical techniques. This thesis addresses the topic systematically, by first

proposing integration techniques for probability samples, and then integration

techniques between probability samples and big data. The term big data refers to

non-probabilistic samples containing a large amount of variables and population

elements. First, the determining conditions for choosing the technique, sample

type and available information are presented. Then, a suitable statistical technique

is selected and applied for survey integration. For a more in-depth analysis the se-

lected statistical technique is applied to different models, in the case of integration

between two probability samples, or to different types of big data, in the case of

integration between a probability sample and big data. At the end, the estimates

obtained in each case study is examined with particular regard to the relationship

between the applied technique and different models or different types of big data.
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1 Introduction

Data integration is a hot topic which is gaining a lot of interest during the last years

in the field of statistics. This is explained by the growing availability of data in every

sector and the need for answering challenges that finite population inference using

probability sampling has always faced, (i) high-cost, and (ii) increasing response bur-

den. Data integration means combining estimates from multiple surveys, a definition

is given by Dalla Valle 2017: "Data integration is the process of combining hetero-

geneous data that originate from different sources, providing a unified view of this

information".

The increasing amount of questions (coming mainly from politics but not only) that

can’t be addressedwith a single existing survey has driven the development and growth

of this field of statistics. Combining information from multiple surveys can be bene-

ficial for both sampling and non-sampling errors 1 by using one survey to supply in-

formation that is lacking in another. In this way the resulting combined estimates are

enhanced in estimating quantities and have a lower level of sampling errors.

To give the reader a chance to navigate the breadth of methodologies applicable in data

integration 2, a systematic approach to classify statistical techniques on the basis of the

type of sample considered is borrowed from Yang and J. K. Kim 2020:

1. integration between two probability samples

2. integration between a probability sample and big data.

Two different approaches will be explored for combining two probability samples -

which is the simplest case - and one methodology will be applied for integrating a

probability sample with big data 3.

The paper is organized as follows: first in section 2 the dataset used is presented. The

type of sample and the information available in each sample, which constitute the

basis for the application of the methodologies, will be selected from the dataset, so

an in-depth knowledge of it is essential. Section 3 describes the approaches used for

integrating probability samples. In subsection 3.1 the samples are combined to obtain

more efficient estimator of the parameter of interest. Themethod is applied to different

1typically non sampling error are caused by missing data, coverage error and measurement or re-
sponse error. While a survey can be planned to achieve a particular level of sampling error, it is more
difficult to assess non-sampling error.

2suffice it to say that techniques such as Statistical matching, Data harmonization and Imputation can
be associated to data integration.

3this last methodology could be also applied to combine a probability sample and a non-probability
sample
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type of information available in the samples and different sizes of the samples. In

subsection 3.2 the second approach for integrating probability samples is described.

The aim is creating a single synthetic dataset containing information available in both

sample and then use it for estimation. The method is applied to different type of

information available in the sample. Section 4 describes the statistical technique used

for integrating probability sample and big data. A few words are spent on the general

characteristics of big data to explain how was possible to obtain big data starting from

the dataset presented in section 2. The method proposed is applied to different types
of big data. In sections 3 and 4 simulations are implemented for every case and results

are analyzed. To summarize, in section 5 general conclusion are drawn and future

research are indicated.
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2 Dataset

The dataset used for the analysis is the AMELIA dataset. AMELIA is a “synthetic but

realistic dataset based on social science data” and “provides a realistic framework for

open and reproducible research based on EU-SILC data. [...] AMELIA mimics real

data, i.e. displays marginal distributions and basic interactions between variables of

EU-SILC data (Burgard, Kolb, et al. 2017).

EU-SILC stands for European Union Statistics on Income and Living Conditions.

The aim of the survey is "to collect timely and comparable cross-sectional and longi-

tudinal data on income, poverty, social exclusion and living conditions." 4 Informa-

tion contained in EU-SILC includes: personal and household data, child care, type of

housing, tenure and housing conditions, housing expenses and utilities, nonmonetary

indicators of household deprivation, physical and social environment, personal and

household level of income, level of education, health and access to health care and

employment information. Some of the variables contained in AMELIA have a direct

counterpart in EU-SILC. Table A1 shows the name variables used, the EU-SILC coun-

terpart (if any), and, for categorical variables, a description of different levels. The

levels are listed as used in this paper and do not necessarily correspond to those avail-

able in AMELIA, some variables have been re-categorized. The AMELIA dataset was

developed within the scope of the AMELI (AdvancedMethodolgy for European Laeken

Indicators 5) project, that concerns simulations for poverty measurements. AMELIA

dataset is an answer to the difficulties in carrying out methodological research due to

the lack of freely available adequate data.

The use of a synthetic dataset represents the ideal choice for this work, which follows a

model-assisted approach.6 Indeed, AMELIA dataset allows to leave out comparability

issues that arise when implementing data integration and using real data. These issues

that can arise are pointed out by Elliott, Raghunathan, and Schenker 2018:

• Differences in the type of respondents and/or source of responses’ information:

consider for example the case of two face-to-face interviews; in one respondents

provide information from their memory, and in the other one they answer by

consulting some records available while providing information

4https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-a
nd-living-conditions

5https://www.uni-trier.de/en/universitaet/fachbereiche-faecher/fachbereich-iv/faec
her/volkswirtschaftslehre/professuren/wirtschafts-und-sozialstatistik/forschung-aktue
ll-1/surveystatisticsnet/ameli-1/about-ameli

6in a model assisted approach the aim is to improve inference and analysis by using correlated
information, given an underlying theoretical or design model.
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• Differing modes of data collection: like a face-to-face interview against a tele-

phone interview

• Survey context: response error may differ according to whom is conducting the

survey (a well-known National Statistical Institute against a reputed institution,

but not so well-known)

• Differences in the survey design

• Differences in survey question (question wording or placement of the questions)

With AMELIA it is possible to evaluate and compare the procedure used without fac-

ing the above problems. The dataset 7 and its samples are freely available for the

software R, the version of AMELIA used in this work is v0.2.3 8. The main properties

of the dataset (as list in Burgard, Ertz, et al. 2020) are:

1. large population size (approximately 10 million observations of 33 variables on

personal level and approximately 3.7 million observations of 27 variables on

household level)

2. household structure available (both person-level and household-level variables

are available)

3. regional structure available (4 regions, 11 provinces, 40 districts and 1592 cities)

4. maps of different regional structure (currently in preparation)

5. samples using different samples designs already drawn

Specifically, the sampling designs available are simple random sampling without re-

placement, stratified sampling, two-stage stratified sampling. In all the application

presented in the next sections person-level variables are used.

7each variable is stored in a separated file.
8http://amelia.uni-trier.de/?page_id=121

6

http://amelia.uni-trier.de/?page_id=121


3 Combining probability samples

Probability samples are representative of the target population since they are selected

under known sampling design. The selection probability is known and inference is

usually design-based 9. The basic setup is the following: U = {1, ...,N } is the set of N

units for the finite population, N is the population size and it is known. (xTi ,yi)
T , with

i = 1, ...,N , is the realized value of random variables (XT ,Y )T for unit i, X are auxiliary

variables while Y is the target variable. The parameter of interest is µY = N→1
∑N

i=1Yi .

Ii is the sample indicator, if Ii = 1 the unit i is in the sample, if Ii = 0 the unit i is

not selected in the sample. ωi = P(Ii = 1|i ↑ U ) is the first-order inclusion probability,

while di = ω→1i is the design weight. The sample size is n =
∑N

i=1 Ii . In this work sim-

ple random sampling without replacement is used (SRSWOR), therefore the inclusion

probability is ωi = n
N . When the sampling design is known the first-order inclusion

probability and design weights are also known, so Horvitz-Thompson estimator can

be applied. The Horvitz-Thompson estimator or ω estimator is an unbiased estimator

for ty =
∑N

i=1Yi and it is defined as:

t̂y,ω =
N∑

i=1

Ii
ωi
· yi =

n∑

i=1

yi
ωi

=
n∑

i=1

di · yi . (1)

For estimating the mean of the parameter of interest the ω estimator is divided by

N µ̂Y = N→1
∑n

i=1diyi . The variance of the HT (Horvitz-Thompson) estimator for SR-

SWOR can be estimated using:

V̂ (t̂y,ω) =N2
(1
n
→ 1
N

)
S2
y,s (2)

where S2
y,s =

1
n→1

∑n
i=1(yi → y)2 wiht y =

∑n
i=1 yi . To estimate the variance of µ̂Y it is

sufficient to divide equation 2 by N2.

If populations totals of auxiliary variables X are known it is possible to use them to

correct the ω estimator for Y. This process is called calibration or inverse regression, that
is, the use of known data in the population about independent variables in order to

estimate values of the dependent variable. During the calibration process, weights

are assigned to the units in the sample so that the total X estimated using the sample

matches the one observed in the population:

t̂X = tX (3)

9design-based inference means that the statistical model is known and the focus is on the experi-
ment.
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Equation 3 is the calibration property and belongs to all calibration estimators. When

auxiliary information is available calibration estimators can be used to reduce the vari-

ance of the estimates by using the relationship between the target variable and the aux-

iliary variables. The effect of calibration becomes negative when there are too many

marginal constraints to which calibrate information in the sample, in this case the vari-

ation of weights becomes very high and the minimization problem is an empty space.

Calibration estimators minimize the distance between the original design weights di
and the corrected weights. The estimator considered here is the generalized regression

estimator (GREG) that minimizes the quadratic distance function between the weights

(there could be other choices). The GREG estimator is:

t̂y,GREG = t̂y,ω + B̂(tx → t̂x,ω) (4)

where tx is the known population totals of X and B̂ is the regression coefficient esti-

mated from the sample. GREG estimator is a design-based estimator, but its efficiency

depends on the ability of the model to describe the data. Indeed, the computation of

GREG variance is based on the variance of the residuals (yi → ŷi), where ŷi are the pre-

dicted values. Therefore, the higher the fitting of the linear working model the lower

the variance of GREG estimator (or the higher its accuracy). On the other side, if the

model underlying the GREG is not appropriate for the target variable, a too large vari-

ation of weights may increase the variance with respect to the HT estimator (GREG

estimator can originate negative weights). To avoid an increase of the variance of the

estimates, the variability of weights must be related with target variable (WILLEN-

BORG, SCHOLTUS, and VAN DELDEN n.d.). t̂GREG is asymptotically unbiased for ty ,

this characteristics makes the GREG relatively robust to model choice (Hedlin et al.

2001).

When combing probability samples two different approaches can be identified basing

on the level of information to be combined: a macro approach and a micro approach.

The techniques that can be used for each approach depend on the type of missingness
10 and information available.

3.1 Macro approach

The aim of themacro approach is to "obtain summary information – point and variance

estimates – frommultiple data sources and combine those to obtain more efficient esti-

mator of the parameters of interest, such as population means or totals (Yang and J. K.

Kim 2020)". In other words, information from two different data sources are jointly

10the manner in which data are missing from a sample of a population.
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pooled to obtain better estimates of the parameter of interest than if information from

a single source is used.

The application for the macro approach consider a non-monotone missingness (see ta-

ble 1). In this first application two probability samples A and B are involved, A and

B are drawn from the population with simple random sampling without replacement

(SRSWOR), so the first order inclusion probability is equal to ωi = n/N . With respect

to the technique that will be presented, no particular disadvantage or advantage is

mentioned in applying one sampling design rather than another.

Table 1: Non-monotone missingness for the macro-approach

d Z X1 X2 Y1 Y2
Sample A ↭ ↭ ↭ ↭
Sample B ↭ ↭ ↭ ↭

Looking at table 1, sample A and sample B have some auxiliary variables Z in com-

mon (called common variables), while X1 and X2 (control variables) are observed only in

sample A and B respectively. For Z population totals are unknown, for X1 and X2 pop-

ulation totals are known. The target variable Y1 is observed only in sample A, while

the target variable Y2 is observed only in sample B.

Renssen and Nieuwenbroek 1997, Merkouris 2004 and Merkouris 2010 address the

problem of combining data from two independent probability samples to estimate µY1
and µY2. The idea behind these papers is to obtain the estimation for the population

totals of the common variables Z by pooling both surveys and then use them, together

with the known population totals of the control variables, to improve the estimates

of µY1 and µY2. In other words, estimation of the population totals of the common

variables by pooling both surveys makes possible to use them as additional regressors.

Following this procedure it is obtained what Renssen and Nieuwenbroek 1997 call

adjusted general regressor estimator. The weights of such regressor estimator are repro-
ductive with respect to the control variables and consistent with respect to the common

variables.

This technique is well suited to split questionnaires survey design where instead of

having a long questionnaire there are two shorter questionnaires, 1 and 2. The first

part of both forms contains questions regarding the common variables, then one part

of the remaining questions is assigned to form 1 and the other part to form 2. This

allows to decrease the respondent burden and to increase the response rate (trivially

because the questionnaires are shorter). It can be claimed that the reduced number of

observations entails a loss of precision respect to the case whereX1 andX2 are observed

together. This is true, however the loss of precision can be limited if the common vari-
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ables are highly correlated with the target variables.

3.1.1 Methodology

Going into the details of the methodology (found in Renssen and Nieuwenbroek 1997

and Merkouris 2004) the first thing to do is to estimate the unknown population totals

of the common variables:

t̂z = P · t̂zA,GREG +Q · t̂zB,GREG (5)

where t̂zA,GREG and t̂zB,GREG are the general regression estimators for tz in sample

A and B respectively. P and Q are two square matrices such that P +Q = I . In the

literature two different choices for P and Q are proposed:

1. proportional choice: takes into account the difference in sample sizes;

P = (nA +nB)→1 ·nA
Q = (nA +nB)→1 ·nB.

(6)

2. optimal choice: that takes into account the difference in samples sizes, the use

of control variables and the efficiency of the design;

P = V (t̂zB,GREG) · [V (t̂zA,GREG) +V (t̂zB,GREG)]→1

Q = V (t̂zA,GREG) · [V (t̂zA,GREG) +V (t̂zB,GREG)]→1.
(7)

Once the totals for Z are obtained it is possible to compute the adjusted general

regression estimator, that is like the general regression estimator plus an adjustment

term:

t̂y,AR = t̂y,ω + B̂(tx → t̂x,ω) + D̂(t̂z → t̂z,ω) (8)

where t̂y,ω+ B̂t(tx→ t̂x,ω) is the general regression estimator t̂y,GREG and D̂(t̂z → t̂z,ω) is the
adjustment term. To estimate the mean µ̂Y it is sufficient to divide t̂y,AR by N.

3.1.2 Simulation

The methodology explained above is applied to all the cases presented in table 2. Res-

idential status (RES) is a categorical variable that indicates whether the individual

currently lives in the house (level 1) or if he/she is temporarily absent (level 2). Per-

son with highest income in the household (PWHI) is a categorical variable with two
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categories: 1 if the individual is the person with highest income in the household, 2

otherwise. Basic activity status (BAS) is a categorical variable available in AMELIA

with 4 levels: level 1 = at work, level 2 = unemployed, level 3 = in retirement or early

retirement or has given up business, level 4 = other inactive person. In this work the

variable has been re-categorized in three levels by grouping level 2 and level 3 together.

The choice to group in this way was made on the basis of the correlation between ba-

sic activity status and the target variables. For example, through a graph showing the

relationship between the BAS and personal income it is possible to note how for levels

2 and 3 of basic activity status the average personal income does not change; for this

reason the two categories have been merged into a single one. Age (AGE) is the age of

the individual and in AMELIA is censored at 80. Age has been categorize in 3 levels

based, again, on the relationship with the target variables: levels 1 = [0-20], levels 2 =

[21-60], levels 3 = [61-80]. Self-employment (SEM) is a categorical variable with value

1 if individual is self-employed and value 2 if the individual is not self-employed. Age

and self-employment are the control variables, their totals are available in the popula-

tion and used for computing t̂zA,GREG, t̂zB,GREG and t̂y,AR.

The choice to study the cases presented in table 2 is inspired by the simulation study in

Renssen and Nieuwenbroek 1997. The idea is to compare the behaviour of the general

regression estimator, the adjusted general regression estimator with optimal choice,

and the adjusted general regression estimator with proportional choice, when there

are different sample sizes and different number of control variables.

The target population is all people of AMELIA dataset. Sample A and sample B are

two probability samples drawn from the same population N.

The simulation is implemented as follows:

1. 1000 samples A and B are randomly drawn from the population with SRSWOR.

In each simulation the seed is set to i (i indicates number of the simulation and

goes from 1 to 1000).

2. for each of the 1000 samples A the totals of the common variables Z are esti-

mated. The same is done for each of the 1000 samples B. To estimate t̂zA,GREG

and t̂zB,GREG the known total of the common variables is used in the calibration.

3. using the estimated totals from sample B and sample A it is possible to compute

thematrices P andQ for the optimal case (to compute P andQ in the proportional

case it is sufficient to know the sample size). The matrices P and Q are used to

compute the totals of the common variables t̂z. For each of the common variables

two versions, using P and Q proportional or optimal, of the totals are obtained

(1000 for proportional choice and 1000 for optimal choice, for each case).
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Table 2: Cases analyzed in the macro approach

Case 1

Sample A Sample B
Sample size 6000 2000
Target variables Personal Equivalised disposable

income income
Common variables Residential status,

Person with highest income
in the household,

Basic activity status
Control variables Age AgeSelf-employment

Case 2

Sample A Sample B
Sample size 3000 3000
Target variables Personal Equivalised disposable

income income
Common variables Residential status,

Person with highest income
in the household,

Basic activity status
Control variables Age AgeSelf-employment

Case 3

Sample A Sample B
Sample size 6000 2000
Target variables Personal Equivalised disposable

income income
Common variables Residential status,

Person with highest income
in the household,

Basic activity status
Control variables Age Age

4. the totals of the common variables estimated by pooling both surveys are used,

together with the control variables X1 for sample A and X2 for sample B, to esti-

mate the totals of the target variables, Y1 for sample A and Y2 for sample B.

To compute GREG estimators and adjusted GREG estimators the function calibrate in

R package survey (Lumley 2020) is used.

Figure 2 represents a multiple violin plot showing the distributions of GREG and ad-

justed GREG estimators in all cases in table 2 for personal income.

Violins in figure 2 represent distributions of the estimators in the 1000 simulations

performed. The wider part of the violin represent values assumed by the estimator
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Figure 2: Violin plot of income for different models in macro approach. Red line is the true
value of mean personal income in the population

with higher probability. The red horizontal line is the true value of the mean personal

income observed in the population. The fact that this value is fairly in the middle

of all violins is therefore a good sign; it means that by running a simulation there is

a high probability of obtaining an estimated personal income close to its true value

in the population. In contrast, the narrower and more elongated parts of the violins

represent values assumed by the estimator with less probability. When a violin has

a particularly elongated shape, such as the GREG estimator in case 3, it means that

in worst-case scenarios we observe values that are particularly far from the true value

in the population. In general, the GREG estimator and adjusted GREG estimators are

more compact and centered around µY in the case of personal income and more elon-

gated when equivalised disposable income is estimated (see figure A1 in the appendix).

To test whether there was a gain in terms of variance reduction, for each case and for

both samples, the variance of the Horvitz-Thompson estimator, the variance of the

GREG estimator and the two GREG adjusted estimators are computed. The variance

of the HT estimator is taken as reference and set to 100. The results are reported in

table 3 (a similar comparison is made by Renssen and Nieuwenbroek 1997). The first

notable thing is that all estimators show an improvement in terms of variance over the

Horvitz-Thompson estimator (they are lower than 100). This means that the weights

obtained as results of the calibration process are correlated with the target variables

and the efficiency of the estimates improves (this is more evident for personal income

than for equivalised disposable income). In case 1 and case 2 samples A and B dif-

fers for the number of control variables. Sample A uses 2 control variables (age and

self-employment, 5 categories in total) and sample B uses 1 (age, 3 categories in total).

When the number of control variables is higher the GREG estimator performs better

13



Sample A Sample B

Personal income Equivalised disposable
income

Case 1

GREG 93.38 99.93
Adjusted GREG
1) optimal 83.30 98.78
2) proportional 83.30 98.78
Case 2

GREG 93.33 99.92
Adjusted GREG
1) optimal 83.12 98.79
2) proportional 83.12 98.79
Case 3

GREG 96.55 99.93
Adjusted GREG
1) optimal 86.39 98.81
2) proportional 86.39 98.81

Table 3: Estimated variances of general regression estimator (GREG) and adjusted general
regression estimator (adjusted GREG) for different choices of P and Q matrices relative to the
corresponding estimated variance of the Horvitz-Thompson estimator

in terms of variance, 93.38 against 99.93 and 93.33 against 99.92. When the control

variables are the same for the two samples, as in case 3, the GREG estimator performs

better in sample A, 96.55 against 99.93. When the GREG estimator is calculated us-

ing more control variables, it is normal to expect it to perform better, as can be seen

from cases 1 and 2. The fact, however, that in case 3, where the common variables are

the same, the GREG performs better again for sample A is evidence of other factors

affecting its accuracy. These factors are, the sample size - in cases 1 and 3 sample A has

a larger sample size than sample B - and the correlation between the target variables

and the control variables - the correlation is stronger with personal income than with

equivalised disposable income.

Comparing the results of the GREG estimator with those of the adjusted GREG we

see that the latter performs better in all three cases, both with the optimal and pro-

portional choice. The difference in the performance is more evident in sample A than

sample B. In all cases in sample A the adjusted GREGs have a variance about ten per-

centage points lower than that of the GREG, while in the case of sample B this distance

is reduced to one percentage point.

When common variables are used the factors that influence the variance reduction are:

the difference in sample sizes between the two samples, the choice of P and Q matrices,

the partial correlation between target and control variables and the partial correlation
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between common and control variables (Renssen and Nieuwenbroek 1997). In cases 1

and 2 we expect to see a difference between proportional and adjusted GREGs due to

the different number of control variables. In particular we would expect the optimal

choice to outperform the proportional choice since the first takes into account the dif-

ference in sample sizes and in the use of control variables, while the second one takes

into account only the difference in sample sizes. To be more precise; in case 1 optimal

choice consider that sample A has two control variables and sample B just one and that

sample A is bigger than sample B, while proportional choice only takes into account

that sample A is bigger than B. However, contrary to expectations, for cases 1 and 2,

in both samples A and B, the two different types of P and Q matrices give the same re-

sults (83.30-83.30, 98.78-98.78, 83.12-83.12, 98.79-98.79). The same occurs in case 3

(86.39-86.39, 98.81-98.81), where, however, unlike the other two cases, this result was

expected since the number of control variables used and sample sizes are the same in

the two samples. The differences between optimal and proportional choice within the

same sample can be attributed to the fact that the number of control variables used

in the two sample is almost the same (5 categories, 3 of AGE and 2 of SEM, versus 3

categories of AGE) and can’t reflect a difference in the variance of the adjusted GREGs.

Instead, the differences between sample A and sample B concern the partial correlation

between target and control variables and the partial correlation between common and

control variables, which in both cases is greater with personal income than with equiv-

alised disposable income.

To try to bring to light numerical differences between the variances of proportional

and optimal choice a fourth simulation was conducted using three more common vari-

ables (9 categories added in total) for sample A than for case 1 (see table 4). The added

common variables are marital status (3 categories), household size (4 categories) and

sex (2 categories).

Also for this additional case, the variance has been calculated for each estimator

(GREG and the two adjusted GREGs) using the Horvitz-Thompson estimator variance

value as 100. Results are shown in the second part of table 4. Despite the increase of

control variables in sample A the proportional estimator still performs as well as the

optimal (to find a difference between the two one has to look to the second decimal

place). To see greater differences between the two matrices P and Q used one can:

• further increase the common variables for sample A

• increase the difference between sample A and sample B using two different sam-

pling designs. The proportional choice takes into account the efficiency of the
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Table 4: Additional case in the macro approach

Case 4

Sample A Sample B
Sample size 6000 2000
Target variables Personal Equivalised disposable

income income
Common variables Residential status,

Person with highest income
in the household,

Basic activity status
Control variables Age

Age
Self-employment
Marital status
Household size

Sex
Sample A Sample B

Personal income Equivalised disposable
income

Case 4

GREG 92.56 99.93
Adjusted GREG
1) optimal 82.80 98.79
2) proportional 82.81 98.78

sampling design and may perform better than the proportional choice, which

does not take this into account

Other statistics about the simulation, relative bias and relative root mean squared error

(RMSE), are reported in the appendix in table A2.

3.2 Micro approach

The aim of the micro approach is to “create a single synthetic dataset that contains all

available information for all data sources (Yang and J. K. Kim 2020)”. In other words,

the goal is to collect information from two or more different sources and combine them

into a single, more easily consultable dataset. The synthetic dataset created can then

be used to estimate parameters of interest11.

The application for the micro approach consider a monotone missingness (see table 5).

Sample A and sample B are collected from two independent surveys referring to the

same target population. From the first survey sample A, which contains information

11again, the ultimate scope is the creation of the synthetic dataset itself, not the estimation of the
parameter, contrary to what happens for the macro approach.
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Table 5: Monotone missingness considered for the micro-approach

d X Y
Sample A ↭ ↭ ↭
Sample B ↭ ↭

on both X and Y , is obtained; from the second survey sample B, which contains infor-

mation only on auxiliary variables X, is obtained. As in the macro approach, there is

no particular advantage or disadvantage in applying one sampling design rather than

another; so both sample A and sample B are drawn from the target population with

SRSWOR, the first-order inclusion probability is ω = n/N . The target population is

again all people in AMELIA dataset.

The technique applied is mass imputation (or synthetic data imputation); this method-

ology allows to create imputed values for variables not observed in a survey by using

information contained in other surveys. In mass imputation an independent sample is

used as training dataset and imputation is applied to all the units in the other sample

(differently from usual imputation where an imputation model is developed to impute

missing values in a dataset). Legg and Fuller 2009 and J. K. Kim and Rao 2012 develop

synthetic imputation approach to combine different sources. The idea behind this pa-

pers is to use sample A to fit a working model relating the variable of interest Y to

the auxiliary variables X. The model fitted is then used to predict the target variables

Y associated with the values of auxiliary variables X in sample B. Then a projection

estimator for µY is obtained from design weights of B and synthetic (imputed) values

of Y .

This technique is suitable in cases where sample B is much larger than sample A and

collect information on Y is relatively expensive, so measuring Y in sample B would

require a large amount of money. In this paper sample A and B are two samples drawn

from the same target population, also called nonnested two-phase sampling. The same

methodology can be applied to traditional two-phase sampling, or double sampling,

where a large first-phase sample is selected and then a much smaller second-phase

subsample where also Y is observed. Sample A and B could be also selected from

different frames as long as X is comparable in the two surveys.

3.2.1 Methodology

Going into the details, in this technique sample A is used as training sample for pre-

dicting Y in sample B. The steps are the following:

1. fit a working model E(Y |X) = m(X;ε0) basing on the data {(xi ;yi) : i ↑ A} from
sample A
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2. predict the values of Y associated with X in sample B, ỹi = m(xi ; ε̂) for i ↑ B. ỹi
are called predicted values or synthetic values.

3. impute predicted values ỹi to sample B, thus obtaining a single synthetic dataset

4. compute the projection estimator

Ŷp =N→1
∑

i↑B
di,Bỹ (9)

The projection estimator is asymptotically design unbiased if

∑

i↑A
di,A{yi →m(xi ; ε̂)} = 0 (10)

The second term of the difference {yi →m(xi ; ε̂)} represents predicted values of Y when

the working model is applied to values of X in sample A. If condition 10 is satisfied

then the bias correct-corrected projection estimator

Ŷp,bc =N→1
∑

i↑B
di,Bỹ +N→1

∑

i↑A
di,A{yi →m(xi ; ε̂)} (11)

coincides with equation 9. An advantage of this procedure, as pointed out by J. K. Kim

and Rao 2012 is that the same design weight di,B is used even when different working

models generate the synthetic values. The variance of Ŷp is equal to:

V (Ŷp) = V
[
N→1

∑

i↑B
di,Bỹ

]
+V

[
N→1

∑

i↑A
di,A{yi →m(xi ; ε̂)}

]
(12)

The first term in 12 is the variance due to sampling in survey B, the second term is

the variance due to sampling in survey A. Excluding the second term in 12 can lead to

underestimation of the variance even if 10 is satisfied. When some populations totals

of X are known first calibration weights, for sample A and sample B, are obtained such

that
∑

i↑A di,Axi = tx and
∑

i↑B di,Bxi = tx. Then these new weights are used in equations

10 and 9 respectively.

3.2.2 Simulation

The methodology presented is well-suited to the case where sample B is much larger

of sample A, as mentioned in paragraph 3.2, therefore for the simulation study sample

A has a size of nA = 1500, and sample B nB = 15000. Both samples are drawn with SR-

SWOR from the target population, all people in AMELIA dataset. The target variable
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Y is personal income. Different cases regarding the auxiliary variables observed in the

sample and the known population totals are considered, these cases are presented in

table 6. In the first case sample A and B contain 6 auxiliary variables and for 3 of them

totals are known in the population, in the second case 4 auxiliary variables are avail-

able and no totals are known in the population, in the last case two auxiliary variables

are observed in the samples and total is available in the population for on of them. Age

has been categorized in 3 levels; level 1 = [0-20] years, level 2 = [21-60] years, level 3 =

[61-80] years. Basic activity status has three levels (in AMELIA it is available with four

levels); level 1 = at work, level 2 = unemployed or in retirement or early retirement or

has given up business, level 4 = other inactive person. The categorization of AGE and

BAS is based on their relationship with income. Marital status (MST) is a categorical

variable available in AMELIA with five categories; level 1 = 1: never married, level 2 =

married, level 3 = separated, level 4 = widowed, level 5 = divorced. In this work levels

3, 4 and 5 has been grouped together (again basing on the relationship with personal

income). Re-categorizing variables allows also to reduce the numbers of marginal con-

straints in the calibration process. Residential status (RES) has value 1 if the person is

currently living in the household and value 2 otherwise. Self-employment (SEM) is 1 if

the person is self-employed and 2 if not. Person with highest income in the household

(PWHI) is 1 if the individual has the highest income in the household, 2 if not.

Table 6: Cases analyzed in the micro approach

Case 1

Auxiliary variables Population total is known

Age Yes
Basic activity status Yes

Marital status No
Residential status No
Self-employment No

Person with highest income in the household Yes
Case 2

Auxiliary variables Population total is known

Age No
Basic activity status No
Self-employment No

Person with highest income in the household No
Case 3

Auxiliary variables Population total is known

Age Yes
Self-employment No

The simulation is implemented as follows:
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1. 1000 samples A and B are randomly drawn from the population with SRSWOR.

In each simulation the seed is set to i (i indicates number of the simulation and

goes from 1 to 1000).

2. sample A and sample B are calibrated to the known totals of the population (if

there are some) and calibrated weights are obtained.

3. for each case in table 6 a working model is fitted. To fit the model repeated k-

fold cross validation is used. Sample A is divided into k-subsets, in our case k=10.

When the algorithm is run, it will be trained on 90% of the model and tested on

10%, each run of the algorithm a different 10% is leave out from the training.

The procedure is repeated 3 times. Dividing sample A in train sample and test

sample allows to see how the algorithm performs on data that the model was not

trained on; this matters since the aim is to use the model to make predictions on

unseen data (sample B). In this step R packages caret (Kuhn et al. 2020) and klaR
(Weihs et al. 2005) are used.

4. predicted values of personal income are computed for sample A to check condi-

tion in equation 10 (these values are also used for the computation of the vari-

ance, see equation 12)

5. predicted values of personal income are computed for sample B.

6. projection estimator and its variance are computed for each case.

Figure 3 shows a violin plot combined with a box plot for each case. The violin de-

scribes the distribution of the data, while the box plots give information on the in-

terquartile range, the median, the maximum and minimum values, and the outliers.

The red horizontal line represents the true value of income.

The graph shows that the projector estimator distributions are extremely similar in

all three cases. All distributions are centered with respect to the true value µY , that

crosses the median in each of the three cases. Wider sections of the violin represent a

higher probability that the elements of the sample will take on that value. Therefore, in

all three cases there is a high probability that the projector estimator estimates exactly

or it is very close to µY . In case number 3 the violin is slightly more stretched than

in the other two. This means that when the worst-case scenario occurs, that is, when

the sample elements take on an extreme value, the estimator Ŷp is more further away

from µY in case 3 than in cases 1 and 2. Case 1 and Case 3 have the same percentage

of auxiliary variables with known total in the population and auxiliary variables with

unknown total. Specifically, in case 1 the known totals are 3 out of 6 auxiliary variables
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Figure 3: Violin and box plots of personal income for different models in micro approach. Red
line is the true value of mean personal income in the population

and in case two the known total is 1 out of 2 auxiliary variables. Known totals in the

population are used to calibrate di,B in equation 9. In case 2, on the other hand, there

are 4 auxiliary variables and 0 known totals. From figure 3 it seems that what affects
the distribution of Ŷp is the total number of auxiliary variables, the more the better 12,

and not whether their totals are known or not.

Table 7 compare the relative bias and the relative RMSE of Ŷp in the 3 different cases
and with the estimator µ̂Y ,A obtained from sample A. In case 1 and 3 µ̂Y ,A is a GREG

estimator using as known totals AGE, BAS and PWHI in case 1 and AGE in case 3. In

case 2 µ̂Y ,A is a ω estimator since there are no known totals in the population. The

Projection estimator GREG or ω estimator

Relative bias Relative RMSE Relative bias Relative RMSE
Case

1 0.000572 0.000989 0.000926 0.001028
2 0.000451 0.001011 0.000556 0.001247
3 -0.000404 0.001148 0.000003 0.001190

Table 7: Relative bias and relative root mean squared error (RMSE) in different cases of micro
approach in comparison with the estimators obtained from sample A in each case

relative bias measures the relative difference from the true parameter:

Relative bias =
∑k

i=1(µ̂Y →µY )
µY

(13)

12obviously to have an improvement in the estimation of µY the variables must be correlated with
personal income
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where k = 1000 is the number of simulations. When the relative bias is equal to 0 there

is no difference between the estimator and the true value. Relative RMSE instead is a

measure of the accuracy of the model

Relative RMSE =

√√
1
k

∑k
i=1(µ̂Y →µY )2
∑k

i=1 µ̂
2
Y

. (14)

If relative RMSE=0 then the model has a perfect fit. In general, from table 7 we see

that for each estimator, as the number of auxiliary variables increases, the relative bias

worsens while the relative RMSE improves. In cases 1 and 2 the projection estimator

performs better than the GREG and ω estimator from sample A both in terms of rela-

tive bias and in terms of relative RMSE. In case 3 the projection estimator outperforms

the GREG obtained from sample A in terms of relative RMSE (with lower magnitude

compared to case 1 and 2) but not in terms of relative bias. Also in this case it appears

that the determining factor, for the projection estimator to outperform the estimator

obtained from sample A, is the number of auxiliary variables and not whether or not

their totals are known in the population.

Analysis of the graph 3 and table 7 leads to the conclusion that the difference in the

relative bias and relative RMSE between case 1 and 2 can be attributed mainly to the

difference in the total number of auxiliary variables (6 versus 4) and in a smaller part

to the difference in known totals. To test this hypothesis, a simulation was carried out

for a fourth case (case 4) with the same 6 auxiliary variables as in case 1 but with all

totals unknown. In case 4 the relative bias is 0.000457, and relative RMSE is 0.001009.

Compared to case 1 in case 4 the lack of known totals is good news for the relative

bias, which decreases due to fewer restrictions, and on the other hand is bad news for

the accuracy of the model. The presence of known totals affects the projection estima-

Case Projection estimator GREG or ω estimator

1 87.98 83.97
2 98.97 100
3 99.52 99.01
4 98.90 100

Table 8: Estimated variances of projection estimator relative to the corresponding estimated
variance of the Horvitz-Thompson estimator. Value of 100 indicates that no totals were avail-
able and ω or HT estimator is computed. The variances of GREG estimators are smaller than
those of projection estimators because the latter consist of the sum of two variances; the vari-
ance due to sampling in survey B, and the variance due to sampling in survey A (see equation
12)

tor through di,B (equation 9) and the variance through di,B and di,A (equation 12). Is

looking at the variance that the greater difference emerges. Table 8 report the variance
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of the projection estimators in all 4 cases using as reference value the variance of the ω

estimator. The table shows that the variance in case 1 is smaller than variance in case

4 (87.98 against 98.90).
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4 Combining probability sample and big data

Big data is13 a term used to indicate data sets that are too large or too complex to be

dealt with by the available computer or storage power. In other words, big data is a

non-probability sample with large amount of variables and population elements. Be-

ing a non probability sample implies that "it fails to represent the target population

because of inherent selection biases (Yang and J. K. Kim 2020)". Today big data can

be considered 1,024 terabytes of information, including billions or even trillions of

records from millions of people14. Usually big data is defined through its characteris-

tic, the so-called three Vs (Tam and Clarke 2015):

• volume: the number of data records, their attributes and linkages

• velocity: how fast data is produced and changed, and the speed at which they

must be received, processed and understood

• variety: the diversity of data sources, formats, media and content.

Big data contains information of poor quality due to heterogeneity, selection bias and

high dimensionality, for these reasons it is not suitable for production of statistics;

but it can be used to increase the cost efficiency of produced estimates. The growing

demand for more frequent and richer statistical estimates (nowadays the demand for

surveys exceed the supply) led the scientific community to wonder if it was possible

to solve problems tipically connected to big non-survey data, such as representative-

ness and measurement errors, by combining them with probability samples, which

are much smaller in size but contain high-quality information. For their part, proba-

bilistic samples suffer from high nonresponse rates and require expensive surveys to

be conducted. The fact that big data, and non-probabilistic samples in general, are

increasingly available provides unprecedented opportunities for research purposes.

Where big data is lacking gold standard data sources (census and survey) have their

strengths, and vice versa, with data integration it is possible to combine them to elim-

inate their weaknesses. Big data can come from a variety of different sources (listed by

Tam and Clarke 2015 and Couper 2013):

1. administrative sources (administrative or private sector programs): e.g. elec-

tronic medical records, hospital visits, insurance records

13in the literature there is no uniformity in attributing the singular or plural to the term big data, in
this paper the line of adopting the singular was chosen

14https://itchronicles.com/what-is-big-data/#:~:text=%E2%80%9CBig%20data%E2%80%9D%
20is%20a%20term,records%20from%20millions%20of%20people.
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2. transactional data: arising from the transaction between two entities, e.g. credit

card transaction or online transaction

3. sensor network sources: e.g. satellite imaging, road sensors and climate sensors

4. tracking device sources: e.g. tracking data from mobile telephone and GPS

(Global Positioning System)

5. opinion data sources: e.g. comment on social media

6. behavioral data sources : e.g. online searches and online page views

7. web panel survey : a survey utilizing samples from web panels

For the analysis that will be constructed in the following sections, it is necessary to

derive big data from the AMELIA dataset described in section 2. For this reason the

focus now will be on one of the sources listed above, web panel surveys. This source is

the one from which (imaginatively) the big data used in subsection 4.2 are derived.

"A web panel – or online/internet panel" – is defined as "an access panel of people

willing to respond to web questionnaires [...] an access panel is a sample database

of potential respondents who declare that they will cooperate for future data collec-

tion if selected (Svensson and Sweden 2013)". In other words, web panel are like the

sampling frames for web panel surveys. Participants in web panel surveys can be re-

cruited in different ways. However the sample selected from the web panel survey is

not a probability sample, even if the recruitment was done thought probability sam-

pling, and so it is subject to selection bias. In this work self-selection as recruiting

method is considered (the so-called self-selection surveys are surveys simply put on

the web). Since there is no sampling design and everyone one can just complete the

survey all selection probabilities are unknown and Horvitz-Thompson estimator can’t

be applied. As pointed out by Bethlehem 2016 self-selection web surveys may suffer
from more problems: such as "people who participate more than once, respondents

from outside the target population, and groups of people who together attempt to ma-

nipulate the outcomes of the survey actuating fraudulent or inattentive behavior". The

risk of manipulation from professional survey takers that take part in many different
web-panels is real. According to Couper 2013 "there is evidence that a relatively large

number of surveys are completed by a relatively small number of active panelist, many

of whom belong to several panels". Self-selection also causes the exclusion of certain

subgroup of people; for example it is expected that some population groups are under-

represented, owing to the differential adoption and use of technologies and Internet of

people. Indeed, "the main issue with self-selection is that responders differs from non-

responders, estimating the effect only from responders might confound the effect and
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the choice to respond (Dalla Valle 2017)". According to Bethlehem 2010 the bias re-

sulting from self-selection will be diminished if the relationship between participation

behavior and the target variable is reduced. Another problem in web panel surveys is

undercoverage, since the target population of a survey is often wider to those hav-

ing access to the internet. The bias risk may be most severe "for surveys on elderly,

low-educated and ethnic minority groups, since they have lower Internet coverage" as

pointed out by Svensson and Sweden 2013. After this considerations is this clear that

big data needs to be supplemented with survey data to cover unrepresented segment

of the population.

The following paragraph 4.1 will describe the methodology used to integrate big data

and probability sample. In paragraph 4.2 it will be explained how big data was ob-

tained from AMELIA and the simulation implemented.

4.1 Methodology applied

The scenario considered for combining big data with a probability sample is the one in

table 9. Sample A is the probability sample (in fact design weight di = ω→1i is known)

and sample B is the big data not representative of the target population. In both sam-

ples target and auxiliary variables are observed but in some cases target variable in

sample B is measured with error (Y ↓=target variable with measurement error).

Table 9: Scenario considered for combining big data with probability sample

d X Y Y* Representative
Sample A ↭ ↭ ↭ Yes
Sample B ↭ ↭ ↭ No

The idea is to use the information contained in the big data (about X and Y or about

X and Y ↓) to improve the estimator µ̂Y obtained from sample A. To exploit such infor-

mation the big data sample is considered as a new population to use in the calibration

process and sample A is like a second-phase sample from the big data.Yang and Ding

2019 and J.-K. Kim and Tam 2021 use the incomplete finite population in big data

sample for calibration weighting. Below is presented the methodology used by J.-K.

Kim and Tam 2021, an advantage of this technique is that no missing-at-random as-

sumptions are made.

The first step is to identify the subset of units in probability sample A that also belong

to the big data operating an individual-level matching (J.-K. Kim and Tam 2021 also
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propose an alternative when this is not possible). To conduct the matching, a variable

ϑi is created for i ↑ A such that:



ϑi = 1 i ↑ B
ϑi = 0 otherwise

(15)

The true total of Y (tY ) in the population can be written as:

tY = tb + tc =
N∑

i=1

ϑiyi +
N∑

i=1

(1→ ϑi)yi (16)

Explained in words, the target population N is stratified in big data stratum (of size

nB =
∑N

i=1 ϑi) and missing data stratum (of size N → nB). From the big data stratum

tb is estimated while tc can be estimated using the probability sample A. To estimate

tY correctly, a regression data integration (RDI) estimator is proposed, such estima-

tor is unbiased even in the case where Y is measured with error in sample B. Since

in the N population all elements contained in the big data are associated with ϑi = 1

(remember nB =
∑N

i=1 ϑi) and all elements not contained in the big sample are associ-

ated with ϑi = 0, the idea behind RDI is using ϑixi for i ↑ A as auxiliary variable and

calibrating it to
∑nB

i=1 xi (which act as a known total observed in the new population

nB). Therefore in calibration estimation (1 → ϑi ,ϑi ,ϑixi ,ϑiyi) it used and known totals

are (
∑N

i=1(1→ϑi) =N →nb,
∑N

i=1nb,
∑nB

i=1 xi ,
∑nB

i=1 yi = tb). If for an auxiliary variable X the

total is known in the population N and not just in the big data (1→ϑi ,ϑi , xi ,ϑiyi) is used
in the calibration and (

∑N
i=1(1 → ϑi) = N → nb,

∑N
i=1nb,

∑N
i=1 xi = tX,

∑nB
i=1 yi = tb) are the

known totals.

It can happen that in big data sample variable Y is measured with error. For exam-

ple, thinking about web panel surveys, it may be the case that in answering certain

questions approximate answers are given, or that to the same question asked in two

different surveys done some time apart the same answer is given because of laziness

(also because often the same people participate in different web panel surveys). It is

intuitive to believe that the approximate answers concern a continuous variable such

as income rather than a categorical variable in which detection usually takes place by

putting a cross on a box. When in the big data sample we observe Y ↓ in the calibration

it is used (1→ ϑi ,ϑi , xi ,ϑiy↓i ) and (
∑N

i=1(1→ ϑi) = N → nb,
∑N

i=1nb,
∑N

i=1 xi = tX,
∑nB

i=1 y
↓
i = t↓b)

are the known totals. The assumption is that y↓i can be obtained from sample A when

ϑi = 1 (this does not mean that target variable Y is measured in sample A with error).

J.-K. Kim and Tam 2021 offer also an alternative definition of ϑi when duplicates are

observed in the big data sample. Duplicate measurements are a real big data problem.
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Thinking of the case of the web panel survey, in which participation is on a voluntary

basis, it is possible for a person to access the panel with two different email addresses

and complete the questionnaire twice. This phenomenon is certainly connected to the

the existence of professional survey takers interested in manipulating the result of web

surveys. When duplicates are detected in big data, ϑi for i ↑ A is defined as the number

of times that the unit i appears in sample B. Also in this case (1→ ϑi ,ϑi , xi ,ϑiyi) is used
in the calibration, and (

∑N
i=1(1 → ϑi) = N → nb,

∑N
i=1nb,

∑N
i=1 xi = tX,

∑nB
i=1 y

↓
i = t↓b) are the

known totals.

4.2 Simulation

The methodology presented in section 4.1 is applied here. The target population N is

all the people in the AMELIA dataset. Sample A is SRSWOR drawn from the target

population of size nA = 1500. In sample A auxiliary variable X and target variable Y

"personal income" measured always without error are observed. Regarding big data,

different types of sample B are obtained from AMELIA dataset:

1. big data 1: all people with age under or equal to 40 years old and income above

the first quantile of personal income. There is therefore a relationship between

participation in the survey and the target variable personal income. The set of

people represented has a sufficient income to guarantee access to the internet

connection via any tool (computer or smartphone) and an age such that they can

use this connection to complete web panel surveys, and therefore are aware of

the their very existence. People are selected directly as a subset of the population

N, in this way no sampling scheme is applied and a non-probability sample is

obtained.

2. big data 2: big data 1 plus all people between 40 and 60 years old with income

above the median. The subset of the population N for which people are expected

to participate in the web panel survey is enlarged here. People older than 40 years

(up to 60) may be aware of these surveys and use the internet to participate in

them. In this case, the income threshold considered sufficient to access the subset

is equal to the median of personal income. It is assumed that the older you are,

the less you are familiar with technological tools; therefore if a person between

40 and 60 has the time to learn how to use the internet for purposes other than

the most trivial ones and to learn about the existence of things like web panel

surveys, it is assumed that his income allows him to acquire the technological

tools and to have time to spend on the web.
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The fact that big data 2 is bigger and contains more information than big data

1 does not mean that it is more representative, these are two non-probability

samples and none is representative of the target population.

3. big data 3: big data 1 with duplicates. In particular;

• 20% of rows of big data 1 without duplicates in big data 3

• 40% of rows of big data 1 with one duplicate in big data 3

• 20% of rows in big data 1 with two duplicates in big data 3

• 15% of rows in big data 1 with three duplicates in big data 3

• 5% of rows in big data 1 with four duplicates in big data 3

Every time the rows with duplicates are randomly selected from big data 1. This

means, for example, that every time the 20% of rows without duplicates change

and never stay the same (the same goes for the other percentages). Since 1000

simulations are implemented, there will be 1000 different versions of big data

3, each time the duplicates rows, and the number of times they are duplicate,

change.

4. big data 3: big data 2 with duplicates. In particular;

• 20% of rows of big data 2 without duplicates in big data 4

• 40% of rows of big data 2 with one duplicate in big data 4

• 20% of rows in big data 2 with two duplicates in big data 4

• 15% of rows in big data 2 with three duplicates in big data 4

• 5% of rows in big data 2 with four duplicates in big data 4

Again each time rows with duplicates are randomly selected from big data 2.

5. big data 5: big data 1 with measurement errors in personal income. It is assumed

that 80% of personal income measurements are measured with error. In one case

we assume a measurement error downwards

y↓i = 0.7 · yi + ei (17)

and in one case upwards

y↓i = 1.3 · yi + ei . (18)

Each time the rows containing Y ↓ are randomly extracted from big data 1. There-

fore 2000 different versions of big data 5 are obtained; 1000 containing 80% of
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observations (different each time) of personal income measured with error ac-

cording to the equation 17 and 1000 containing each time 80% of observations

(different each time) of personal income measured with error according to the

equation 18. In equations 17 and 18 ei ↔N (0,0.5).

6. big data 6: big data 2 with measurement errors in personal income. Again,

80% of personal income measurements are measured with error. In one case

we assume a measurement error downwards like in equation 17 and in one case

upwards like in equation 18. Each time the rows containing Y ↓ are randomly

extracted from big data 2. Therefore 2000 different versions of big data 6 are

obtained.

A schematization of the variables used for each type of combination between prob-

ability sample A and big data is provided in the table 10.

big data 1 and 2

Auxiliary Population total
variables is known

Sex Yes
Region Yes

big data 3 and 4 (duplicates)

Case 1 Case 2
Auxiliary Population total Auxiliary Population total
variables is known variables is known

Sex Yes Sex Yes
Region Yes Region Yes

Household size No Marital status No
big data 5 and 6 (under and over measurement error)

Auxiliary Population total
variables is known

Sex Yes
Region Yes

Table 10: Cases analyzed when combining probability sample and big data

For big data 1, big data 2, big data 5 and big data 6 we observe sex and region as

auxiliary variables, and their totals are known in the population. In big data 3 and big

data 4 there is an extra auxiliary variable, in one case household size and in another

case marital status. Both household size andmarital status have unknown totals, while

sex and region still have known totals in the population.

Sex (SEX) is a categorical variable, assumes value 1 if the individual is male and 2 if

the individual is female. Region (REG) is also categorical and indicates the regional

identifier, the region in AMELIA population are four. Household size (HHS) has been

30



categorized in 4 levels according to the number of people living in the household; level

1 = 1 person, level 2 = 2 people, level 3 = 3 or 4 people, level 4 = from 5 to 16 peo-

ple (considering all AMELIA population household size range from 1 to 16). Marital

status (MST) has three levels; 1 = never married, 2 = married, 3 = widowed, separated

or divorced. The reason for which household size and marital status are considered as

auxiliary variables alternatively but not together, is to avoid risk of having too strongly

correlated variables. Such risk is quite high when considering big data as a new pop-

ulation. If population totals are known adding auxiliary variables is not a problem,

if they are unknown and we calibrate to totals in big data is more probable to have

strongly correlated variables and the impossibility to apply function calibrate of R

survey package (Lumley 2020).

The simulation is implemented as follows:

1. 1000 samples A are randomly drawn from the population with SRSWOR and the

different types of big data are created. The seed is set to i and goes from 1 to

1000.

2. ϑi is created for sample A. In order to perform calibration, interactions between

auxiliary variables and target variable with ϑi are constructed for each case in

table 10.

For big data 1, 2, 5 and 6 ϑi for i ↑ A can assume value 1, if i ↑ B or 0 otherwise.

Interactions are constructed by multiplying ϑi · xi for i ↑ A or ϑi · yi . For big data

3 and 4 ϑi for i ↑ A can assume value 0 if i ! B, 1 if i ↑ B 1 time, 2 if i ↑ B 2 times,

3 if i ↑ B 3 times and 4 if i ↑ B 4 times. To calculate the interactions with the

categorical auxiliary variables we construct as many interaction variables as the

number of levels of X. For example consider the auxiliary variable marital status;

marital status has three levels (1 = never married, 2 = married, 3 = widowed,

separated or divorced) and so three interactions variables with ϑi are constructed.

The first one is: 

ϑi · xi xi = 1

0 otherwise,
(19)

the second one is 

ϑi · xi xi = 2

0 otherwise,
(20)

and the third one is 

ϑi · xi xi = 3

0 otherwise.
(21)
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This way of proceeding is necessary to avoid miss-classification. Indeed, if one

had simply multiply ϑi and xi value of ϑi · xi = 6 would have enclose cases in

which ϑi = 2 and xi = 3 and cases in which ϑi = 3 and xi = 2.

For the continuous target variable personal income is sufficient to simply multi-

ply ϑi · yi .

3. calibration is applied using R package survey (Lumley 2020) and estimators for

mean personal income are computed.

4.3 Results

In this section results obtained from the simulations will be analyzed. Figure 4 shows

a comparison of the distributions of the personal income mean estimator in the case

of big data 1 and big data 2 as new finite population. Blue and orange lines represent

mean of personal income estimates when the new acting population is big data 1 and

big data 2 respectively. Red line is the true value of income observed in the population

N. The violin plots of big data 1 and big data 2 are far apart in figure 4. The estimates

Figure 4: Violin plot of estimates of personal income for big data 1 and big data 2. Blue line is
the mean of personal income estimates when big data 1 is acting as a new population. Orange
line is the mean of personal income estimates when big data 2 is acting as a new population.
Red line is the true value of mean personal income in the population N. The auxiliary variables
used are sex and region, and the totals are known. The target variable is personal income and
is observed in big data 1 and big data 2.

for big data 2 cluster around the value 22915 while the estimates for big data 1 clus-

ter around the value 13994. Since the red line is the true value of personal income it
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is possible to say that in the case of big data 1 the variables used are able to provide

estimates fairly close to the true value of personal income while for big data 2 they are

not (the estimates obtained are very far from the value observed in the population).

This fact is interesting because the variables used to explain personal income are the

same in the two cases. This means that when we expand the subset of people we imag-

ine participating in the web panel survey to people aged 40-60 with income above the

median, the situation becomes far more complicated. When we add this population

segment, the variables sex and region are no longer good regressors for personal in-

come. The estimates are not optimal in the case of big data 1 either, but if nothing else

at least here the violin graph intersects the true value in the population.

When there are measurement errors the situation gets even worse (see figure A2 in the

appendix). None of the violin plots of big data 5 and big data 6, either in the case of

downward measurement error or upward measurement error, intersects the true value

of personal income at its widest part. For big data 6 in the case of under measurement

errors the violin graph is closer to the value in the population than in figure 4. This is

not good news but the sum of two bad scenarios: auxiliary variables unable to explain

the target variable and measurement errors.

Before illustrating how to proceed, the results of the simulation concerning big data

3 are shown in figure 5. The differences between big data 1 and big data 3 concern

Figure 5: Violin plot of estimates of personal income for big data 3 using household size (left)
and marital status (right). Red line is the true value of mean personal income in the population
N. The others auxiliary variables used are sex and region, their totals are known. The target
variable is personal income and is observed in big data 3 and big data 4.

the inclusion of duplicates and the use of two alternately observed auxiliary variables,
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marital status and household size, observed in big data (which were not included in

the previous analysis or the system would have been computationally singular), in ad-

dition to sex and region. In the case where household size is used as an additional

auxiliary variable the violin plot does not intersect the true value observed in the pop-

ulation. In the case where marital status is used the intersection occurs at the lower

end of the violin graph. This means that in the 1000 simulations carried out values

very close to or equal to the average personal income in the population are obtained

in extreme cases, that is, they occur very few times and are outliers in the distribution.

Compared with figure 4, looking at the violin graph referring to big data 1, the ability

to estimate the true value of the average personal income is much worse in figure 5. To

understand whether this result can be attributed to (i) the addition of household size

or marital status as auxiliary variable, (ii) the presence of duplicates in big data 3 or

(iii) both of the previous, table 11 is created.

The table represents the distributions of the different levels of sex, region, marital

REG = 1 REG = 2 REG = 3 REG = 4

Population N 24.6 26.7 22.3 26.4
Big data 1 23.5 25.8 22.7 28.0
Big data 2 24.4 26.8 22.8 26.0

HHS = 1 HHS = 2 HHS = 3 HHS = 4

Population N 8.6 23.5 48.2 19.7
Big data 1 8.3 23.1 48.6 20.0
Big data 2 8.5 23.4 48.8 19.7

MST=1 MST=2 MST=3

Population N 41.4 47.0 11.6
Big data 1 46.9 43.8 9.3
Big data 2 37.7 53.4 11.9

SEX=1 SEX=2

Population N 48.5 51.5
Big data 1 50.2 49.8
Big data 2 49.4 50.6

Table 11: Percentage for different levels of region (REG), household size (HHS), sex (SEX) and
marital status (MST) in target population N, big data 1 and big data 2

status and household size in the target population N, in big data 1 and big data 2. The

distribution of these variables is the same in every population considered. Table 11

shows that there is no difference between observing one of the variables table in the

big data or in the population. Taking sex as example, whether ϑixi=1 for i ↑ A is cali-

brated to the total
∑nB

i=1 xi=1 or whether xi=1 for i ↑ A is calibrated to the total
∑N

i=1 xi=1
males always represent about 50% of the population. The sex variable, like the others

in the table, is distributed approximately in the same way in all population. However
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by looking at table 12 it is possible to see the average of personal income in big data 1

and big data 2 differs from that of population N. The chosen auxiliary variables reflect

Population N Big data 1 Big data 2

Mean of personal income 13435 18551 21669

Table 12: Mean of personal income in the population N, big data 1 and big data 2

a personal income distribution that remains the same in the pairs (i) target population

N and big data 1 and (ii) target population N and big data 2. The estimates obtained

are unsatisfactory for big data 1 (for big data 3 adding duplicates makes the situation

much worse) and disastrous for big data 2. This is because there is much more differ-
ence between the distribution of the population subset considered for big data 2 and

N than the distribution of the population subset considered for big data 1 and N. Any-

how, in both cases there is a need for variables that are able to capture the difference
between N and the segments of the population once considered. This does not mean

that sex, region, household size or marital status are not correlated with the target

variable, but that they are correlated with personal income in the same way in big data

stratum and missing data stratum. If we manage to find auxiliary variables capable of

RES=1 RES=2

Population N 98.3 1.7
Big data 1 96.7 3.3
Big data 2 97.6 2.4

SEM=1 SEM=2

Population N 6.7 93.7
Big data 1 8.3 91.8
Big data 2 8.6 91.4

PWHI=1 PWHI=2

Population N 37.7 62.2
Big data 1 46.6 53.4
Big data 2 51.5 48.5

BAS=1 BAS=2 BAS=3

Population N 42.3 22.4 35.3
Big data 1 63.8 8.2 28.0
Big data 2 65.1 12.7 22.2

Table 13: Percentage for different levels of residential status (RES), self-employed (SEM), per-
son with highest income in the household (PWHI) and basic activity status (BAS) in target
population N, big data 1 and big data 2

bringing to light the different characteristics of the two groups, big data stratum and

missing data stratum, we could explain the difference in incomes and correct our esti-

mate. The question arises spontaneously: do these variables exist or do the two groups
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have identical characteristics except for personal income and age?

To investigate which variables could be useful for our purpose, the distribution of

other categorical variables in population N and in the new big data 1 and big data 2

populations has been analyzed. The results of the analysis are in table 13. The vari-

ables analyzed are four: residential status, self-employed, person with highest income

in the household and basic activity status. The results suggest using PWHI and BAS.

There is a difference of almost 10 percentage points between the number of main in-

come earners in the household in population N and in big data 1 (37.7 percent versus

46.7 percent), and a difference of more than 10 percentage points with big data 2 ( 37.7

percent versus 51.5 percent). Obviously such analyzes can only be done when one has

the entire population available, which in reality does not happen. Where data is not

available it is necessary to proceed with the logic. For example, it is quite intuitive

to think that variables such as gender and region of residence are equally distributed

among individuals who have different ages and income levels above a certain thresh-

old.

The graphs in figure 6 show the distribution of estimates of mean personal income in

the case of big data 1 and big data 2 when PWHI and BAS are entered as auxiliary vari-

ables with known totals in the population instead of region and gender. The problem

Figure 6: Violin plot of estimates of personal income for big data 1 and big data 2 using PWHI
and BAS as auxiliary variables. Blue line is the mean of personal income estimates when big
data 1 is acting as a new population. Orange line is the mean of personal income estimates
when big data 2 is acting as a new population. Red line is the true value of mean personal
income observed in the population N. The others auxiliary variables used are PWHI and BAS,
their totals are known. The target variable is personal income and is observed in big data 1 and
big data 2.
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has not been solved. For big data 1 the situation has drastically worsened compared

to figure 4. The violin graph is concentrated around the value 8216 and in none of

the simulations we obtain values equal to or close to the parameter observed in the

population (red line). For big data 2 the situation is certainly better than figure 4 but

far from obtaining satisfactory results. The values of the distribution of the estimates

are concentrated around the value 16817 and the true value of personal income in the

population is an outlier. In the light of the results in figure 6, two things are evident:

• is not the solution to choose only variables that have different distribution be-

tween big data stratum and population N

• to explain personal income it is necessary to use different auxiliary variables for

big data 1 and big data 2 (the distribution of personal income is very different in
the two cases)

To try to understand which variables could help to obtain more precise estimates of

income, several simulations were carried out trying different combinations of X. In

doing this it is necessary to remember that when a total is known in the population,

the GREG estimator could very well be applied using the sample A. Therefore, if in

choosing auxiliary variables X it is assumed that their total is known, the precision of

the GREG increases and the estimate of personal income obtained by integrating the

probability sample and big data will have to be even more precise to be better than the

one obtained using only the probability sample A. When there are no known totals in

the population, the estimate obtained by integrating the two surveys must instead have

a better performance than the ω estimator that would be obtained from sample A. It is

important to remember that this method of integration aims to improve the estimate

obtained in sample A using the information contained in big data. In our case, the

information provided by big data is the personal income of those who complete the

web survey. One might consider including as few auxiliary variables as possible with

known totals in the population to avoid simultaneously improving the accuracy of the

GREG. Several objections can be raised to this: (i) the precision of the GREG estimator

increases a lot when the first known totals are entered in the calibration and then

marginally much less, therefore it is enough to have sex and region (whose totals are

generally known in the population , think of censuses) to greatly improve the estimate

(ii) inserting more than two variables to be calibrated to the totals observed in big

data 1 or big data 2 makes it impossible to carry out the calibration itself because the

variables are too correlated and the system is without solution (iii) even assuming to

insert many auxiliary variables with known totals and compare the estimate obtained

with the ω estimator (rather than with the GREG estimator) this is still more efficient.
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Several simulations have been conducted using different variables X for big data 1

and big data 2. Sometimes the calibration includes the interaction between ϑi and

yi=personal income, other times this is excluded. In the simulations, in addition to the

already known variables, two new ones are inserted; PY010, the employee cash or near-

cash income and PY020, the non-cash employee income. These variables are useful in

explaining the distribution of income in the two strata of the population (without them

the situation is worse) and can be inserted into the calibration as an interaction with

ϑi without preventing the calibrate function from operating. It is now necessary to

open a small parenthesis regarding the interaction between PY010 or PY020 and ϑi .

Consider the non-cash employee income; first the value -1 (-1 is a value that no one in

AMELIA population has for PY020) is assigned to yi = 0, then the interaction with ϑi is

constructed, and finally the value 0 is reassigned when ϑi ·yi = 1. This step is necessary

because otherwise observations where yi = 0 would generate zero value even if ϑi = 1.

In other words, without assigning the value -1 before performing the interaction, the

case ϑi ·yi = 0 would not include only the cases in which ϑi = 0, but also those in which

yi = 0, generating a miss-classification. This step is unnecessary when yi=personal

income because big data 1 and big data 2 include people with income levels above a

certain threshold. So when ϑi = 1 personal income is never zero. This prevented miss

classification.

The conclusions to which the several simulations conducted led are the following:

1. including or not personal income in the calibration has no visible effect on the

performance of the estimator;

2. for big data 1 and big data 2 some variables have been identified which are able

to explain part of the different distribution of income in the two strata. These

variables are PY010 and PY020 for big data 1, and PY020 for big data 2;

3. after the variables indicated in step two are entered into the calibration, the addi-

tion of other variables can slightly improve the situation or have drastic effects.
However, not only is the relationship of the chosen variables with personal in-

come important, but also the relationship between the auxiliary variables them-

selves. In other words, from table 12 we see that big data 1 overestimates the

level of personal income compared to population N. The distribution of PY010

and PY020 manages to capture this phenomenon and bring the value observed in

big data 1 closer to the real one. By entering PWHI the same phenomenon occurs

and the final estimate of the income is lower than the real value (while actually

it is overestimated). A similar effect is obtained when PY010 and PY020 are used

simultaneously in big data 2.
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In the light of the simulations conducted, the best situations resulted are; for big data

Figure 7: Violin plot of estimates of personal income using as auxiliary variables PY010,
PY020, SEX and REG for big data 1 and PY020 and BAS as auxiliary variables for big data
2. Blue line is the mean of personal income estimates when big data 1 is acting as a new popu-
lation. Orange line is the mean of personal income estimates when big data 2 is acting as a new
population. Red line is the true value of mean personal income observed in the population N.

1 use the employee cash income (PY010), the non-cash employee income (PY020), sex

(SEX) and region (REG); for big data 2 use non-cash employee income (PY020) and

basic activity status (BAS). Employee cash income and non-cash employee income are

calibrated to the total of big data 1 or big data 2, for this reason it was necessary to

build the interaction with ϑi as described above. Instead, basic activity status and per-

son with highest income in the household have known totals in the population.

Figure 7 shows the results obtained when these auxiliary variables are used.The situa-

tion is much better than figures 4 and 6. The red line (not very visible because covered

by the orange one, which represents the average of the estimates obtained when big

data 2 and the new acting population) represents the true value of personal income in

the population. Both in the case of big data 1 and in the case of big data 2, the true

value of personal income passes through the center of the violin graphs. This means

that in the simulations carried out, the estimates obtained are very likely equal to or

very close to the parameter observed in the population. The situation continues to

be better for big data 1 because the violin is less elongated and the values are more

concentrated around the red line, while for big data the shape is more elongated and

values far from the red line are more frequent. Success is not repeated when con-

sidering the case with duplicates (figure 8). When duplicates are added the situation

becomes similar to figure 4 again. For big data 1 compared to figure 4 the red and blue
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Figure 8: Violin plot of estimates of personal income using as auxiliary variables PY010,
PY020, SEX and REG for big data 1 and PY010 and BAS as auxiliary variables for big data
2. Blue line is the mean of personal income estimates when big data 3 is acting as a new popu-
lation. Orange line is the mean of personal income estimates when big data 4 is acting as a new
population. Red line is the true value of mean personal income observed in the population N.

line are closer, it means that the mean of the estimates obtained when big data 1 is the

new population is very close to the true value of personal income in the population.

This is a positive note, on the other hand the fact that the lower part of the violin is

very elongated means that during the simulations, if sample A is particularly bad, ex-

treme values are obtained that are very far from the parameter in the population. For

big data 2 the situation becomes disastrous again, a situation even worse than the one

in figure 4 since the distribution is concentrated around the value 50912 (orange line).

In this case, however, we know that the results are to be attributed to the presence of

duplicates and not to the choice of auxiliary variables which are suitable to explain

the target variable ( see figure 7). The big data 2 violin plot in figure 8 suggests that

the methodology used is not suitable in case of duplicates, while the big data 1 violin

plot suggests the opposite. This difference is probably due to the fact that in big data

2 the duplicates present are in absolute value greater than those present in big data 1

(trivially because in big data 2 a larger segment of the population is considered).

Figure 9 shows results when measurement errors for PY010 and PY020 are present.

PY020 is the variable measured with error in big data 5 and big data 6. The situation

is certainly better than in figure A2 but the results are far from satisfactory. While

in the case of duplicates the results were good for big data 3 and disastrous for big

data 4, in this case the results are mediocre in all four cases. The distributions of the

estimates for big data 5 are compact and not stretched but the personal income line
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Figure 9: Violin plot of estimates of personal income using as auxiliary variables PY010,
PY020, SEX and REG for big data 5 and PY010 and BAS as auxiliary variables for big data
6. PY020 is the variable measured with error in big data 5 and big data 6. Red line is the true
value of mean personal income observed in the population N.

in the population does not cross them centrally, but is slightly shifted downwards. In

the distributions of estimates for big data 6 the red line passes through the center but

the distributions are much more elongated and consequently it is common to obtain

estimates far from the true parameter in the population. In the case of big data 5 we

note that both in the case of upward measurement errors and downward measurement

errors, personal income is on average overestimated compared to the value observed in

the population. Compared to figure A2 there are no differences between the distribu-

tions of over measurement errors and under measurement errors within big data 5 and

big data 6. This is probably a consequence of the choice of better auxiliary variables.

4.4 Monte Carlo effect and matching effect

In light of what emerged in Section 4.2 a new case study is considered for big data. In-

stead of selecting samples from N, the entire population is considered, so the sampling

fraction n
N is equal to 1. In this way it is possible to distinguish thematching effect, that

is, the effect related to the accuracy of the method used, and the Monte Carlo effect,
that is, the effect due to the variability of different samples A. The variables considered

are employee cash income, non-cash employee income, sex and region for big data 1, 3

and 5 and non-cash employee income and basic activity status for big data 2, 4 and 6.

When a sample containing 100% of the observations is considered, the variability due

to sample A is eliminated; therefore there is no need to worry about whether A is a
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good or bad sample. The only source of variation that remains is that due to the match-

ing effect. If the estimates obtained for each type of big data B considered are close to

the true value of the mean value of personal income in the population, it means that

the integration method is suitable for estimating the parameter of interest and any de-

partures from that value are to be attributed to the particular sample A (i.e., you were

particularly unlucky) but not to the method applied, which remains suitable.

Figure 10 reports this analysis for big data 1 and big data 2. The black line represents

(a)

(b)

Figure 10: Results with a sample containing all observations for big data 1 (up) and big data 2
(down)

the true value of the parameter of interest in the population, the blue line is the esti-

mate obtained when 100% of the observations are considered (the estimate does not

change for the 1000 different types of sample A considered because big data 1 and big
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data 2 do not change), and the red dots (they are 1000) report the estimates obtained

for each sample A when the seed is equal to the number of the current simulation (1

to 1000).

For big data 3, 4, 5 and 6, there is no longer a blue line but 1000 light blue dots repre-

senting the results obtained when the Monte Carlo effect is equal to 0. In these cases

there are 1000 points and not one line because big data 3,4,5 and 6 change every time

sample A changes. Seeds are kept the same as in section 4.2. Figure 11 shows the

results for big data 3 and 4. The appendix shows the results for big data 5 and big

(a)

(b)

Figure 11: Results with a sample containing all observations for big data 3 (up) and big data 4
(down)

data 6 (figure A3). All the graphs show that the variability introduced by the method

used (matching effect) is almost null. The light blue dots are distributed along a line
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that roughly corresponds to the mean of personal income estimates when that partic-

ular type of big data is considered to be the acting population. The values obtained

when using 1000 different A samples are distributed around the line of light blue dots.

What seems to be important is how to condition the position of the blue line of points,

i.e. through the choice of good auxiliary variables. However, sometimes these vari-

ables are not sufficient to reach good estimates if there are duplicates or measurement

errors. And this is not because there is much variability due to the matching effect,
rather because the method used is not robust in the presence of too many duplicates

or would require variables even more strongly correlated with personal income (like

in the case of big data 2).
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5 Summary

This thesis aimed to investigate methods for integrating different data sources. Specifi-
cally, two methodologies for integrating probabilistic samples with each other and one

methodology for combining big data with a probabilistic sample were investigated.

The first methodology followed a macro approach, where the goal is to combine mul-

tiple data sources to have more efficient estimates of the parameter of interest. The

methodology applied here has an additional and not secondary purpose to that of ob-

taining more precise estimates of the variable of interest, that is to create consistency

between the two samples with respect to the common variables. Regarding the first

purpose, the gains are present only if the common variables are highly correlated with

both target variables. This generates the problem of finding common variables able

to explain two different phenomena. In this application the common variables were

useful in explaining personal income, but not as much in explaining equivalised dis-

posable income. However, although the gain in terms of parameter of interest estima-

tion and variance were minimal, in the case of equivalised disposable income was still

possible to obtain information on the unknown total of some variables using informa-

tion from two different surveys. If our purpose had been only to estimate personal

income and reduce the variance of the GREG estimator, we could still have used infor-

mation from other surveys to estimate unknown totals in the population and obtained

satisfactory results. What could not be shown is a significant difference in the use of

optimal or proportional choice when the adjusted GREG is calculated. Nor does a sig-

nificant difference emerge by greatly increasing the control variables in one sample

compared to the other. However, the fact that a very small difference emerges suggests

that if there were even more different conditions in sample selection (perhaps even

with respect to sampling design) the optimal choice would have been able to capture

them.

In contrast, the other technique for integrating probabilistic samples followed a micro

approach. That is, the primary purpose is to create a synthetic dataset that summa-

rizes information from different surveys into a single dataset. Although the primary

purpose in this approach is not to obtain an estimator, it is evident that the synthetic

dataset created is well suited for this. Regarding the accuracy of the model that is used

to predict personal income values in the sample where they are missing, the more aux-

iliary variables are used, the better. Whether the totals of auxiliary variables are known

is an additional positive factor, but less important than the number of variables them-

selves. For example, better six variables with unknown totals than five with a known

total. Instead, evaluating the variance of the projection estimator, and no longer the
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accuracy of the model, shows that it has substantial reductions when the weights are

calibrated based on known totals. This method is effective and useful for avoiding

measuring variables whose detection is costly in large samples.

Looking at the integration between probability samples and big data, the situation cer-

tainly becomes more complicated. The methodology involves using the information

contained in the big data to improve the performance of the estimator obtained from

sample A. To do this, the big data is considered as a new population in the calibration

process. When big data is obtained from the AMELIA dataset, this is done by selecting

age classes and income thresholds. The choice of ages and income levels was made

considering that the big data used in this work were derived from a web panel survey,

therefore, a relationship was established between the variable of interest and survey

participation (as happens in web panel surveys). This relationship adds a lot of com-

plication, finding variables that can explain the different income distribution in the

two strata of the population becomes very difficult. Not only because none alone can

explain the income distribution in the big data, but also because the positive contri-

bution of two variables can become negative if both are included. Therefore, in order

to apply this technique, it is necessary to have information about the type of variables

that can be used in the calibration. This procedure becomes much easier when the

variable of interest is not related to web survey participation. If for example big data

had been created as a subset of the population including all females and no males,

variables such as age, self-employed, basic activity status would have been able to de-

scribe the income distribution in big data. Eventually, even using an uncomfortable

method of obtaining big data such as the one described here, it was possible to find

variables that returned satisfactory estimates of personal income. This cannot be con-

sidered a complete victory since the ω estimator still remain better, and thus it would

not make sense to resort to integration techniques. Moreover, auxiliary variables that

perform well in the simple case of big data and quite well in the case of measurements

error, still fail in the case where duplicates are present. The proposed technique for

dealing with duplicates does not seem adequate and it is advisable to remove them if

they are detected. Part of the failure of this method can be attributed to the size of our

big data, far from those needed to be defined as such. Perhaps with larger size it would

be possible to include more variables in the calibration without running the risk of too

much correlation. On the other hand, the proposed methodology is also applicable

for non-probability samples. Therefore, even assuming that sample B obtained from

the AMELIA dataset cannot be called big data, and that the number of observations in

that sample is not comparable to the far greater number of observations that big data

has, the applied method should still work since sample B, if not big data, is definitely
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a non-probability sample.

By virtue of this last observation, we can conclude that although the analyses are based

on synthetic data and simulations, the results provide useful insights into the integra-

tion of multiple data sources; specifically the integration of two probabilistic samples

and the integration of a probabilistic sample and a non-probabilistic sample. Further

developments could concern the use of different sampling schemes, available in the

AMELIA dataset, to see if there is a change in the estimates obtained.
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Appendix

Figure A1: Violin plot of equivalised disposable income for different models in macro ap-
proach. Red line is the true value of mean personal income in the population

Figure A2: Violin plot of estimates of mean personal income for big data 5 and 6 using over
and under measurements errors. Red line is the true value of mean personal income in the
population N. The auxiliary variables used are sex and region, and the totals are known. The
target variable is personal income and is observed in big data 1 and big data 2.
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Personal income Equivalised disposable income

Relative bias Relative RMSE Relative bias Relative RMSE
Case 1

GREG 0.000593 0.000436 0.00130 0.000972
Optimal 0.000607 0.000441 0.00129 0.000961
Proportional 0.000607 0.000441 0.00129 0.000960
Case 2

GREG 0.000808 0.000597 0.00102 0.000733
Optimal 0.000808 0.000597 0.00102 0.000733
Proportional 0.000808 0.000597 0.00102 0.000733
Case 3

GREG 0.000603 0.000450 0.00130 0.000972
Optimal 0.000618 0.000459 0.00129 0.000959
Proportional 0.000618 0.000459 0.00129 0.000959

Table A2: Relative Bias and relative root mean squared error (RMSE) in different cases of macro
approach, for mean of personal income and equivalised disposable income
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(a)

(b)

Figure A3: Results with a sample containing all observations for big data 5 (up) and big data
6 (down). Case 1 = under measurement errors with sample A; Case 2 = under measurement
errors when considering all observations; Case 3 = over measurement errors with sample A;
Case 4 = over measurement errors when considering all observations. Black line is the true
value of population mean personal income.
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